Dependently Typed Data Structures*

Hongwei Xi
Oregon Graduate Institute

Abstract

The mechanism for declaring datatypes in functional pnogming languages such as ML and Haskell
is of great use in practice. This mechanism, however, oftdiers from its imprecision in capturing the
invariants inherent in data structures. We remedy the titaavith the introduction of dependent datatypes
so that we can model data structures with significantly memicacy. We present a few interesting ex-
amples such as implementations of red-black trees and léhdmaps to illustrate the use of dependent
datatypes in capturing some sophisticated invariants tia stauctures. We claim that dependent datatypes
can enable the programmer to implement algorithms in a watyisimore robust and easier to understand.

1 Introduction

The mechanism that allows the programmer to declare dagatypems indispensable in functional program-
ming languages such as Standard ML [15] and Haskell [19]rdutire, we often encounter situations where
the declared datatypes do not accurately capture what vilg resed. For instance, if what we need is a
data structure for the pairs of integer lists of the sametlenge often declare a datatype in Standard ML or
Haskell that is fomll pairs of integer lists. This inaccuracy problem is oftenchisource for program errors.
A typical scenario is that a function which should only rereegs its argument a pair of integer lists of the
same length is mistakenly applied to a pair of integer lis@ifberent lengths. Unfortunately, such a mistake
causes no type errors if pairs of integer lists of equal leage given a type that is for all pairs of integer lists,
and thus can usually hide in a program unnoticed until attimne; when debugging often becomes much
more demanding than at compile-time.

The inaccuracy problem becomes more serious when we starptement more sophisticated data struc-
tures such as red-black trees, binomial heaps, ordersddist. There are some relatively complex invariants
in these data structures that we must maintain in order téeément them correctly. For instance, a correct
implementation of an insertion operation on a red-black slould always yield a red-black tree. If we can
form a datatype to precisely capture the properties of abtadk tree, then it becomes possible to detect
a program error through type-checking when such an erratsi¢a the violation of one of these captured
properties. This is evidently a desirable feature in prograng if it can be made practical.

The need for forming more accurate datatypes partially vattd the design of Dependent ML (DML),
an enrichment of ML with a restricted form of dependent typdere precisely, DML is a language schema.
Given a constraint domai@', DML(C) is the language in the schema where all type index expressice
drawn fromC. Roughly speaking, a type index expression is simply a teahdan be used to index a type.
Type-checking in DML(') can then be reduced to constraint satisfactiofy'inin this paper, we restriaf’
to some integer domain and use the name DML for this partiddML(C). A variant of DML, de Cam|
has been implemented on top of Caml-light [14]. This implataton essentially replaces the front-end of

*Partially supported by the United States Air Force Matefliemmand (F19 628-96-C-0161) and the Department of Defense.

www.manaraa.com

Caml-light with a dependent type-checker and keeps the-badlof Caml-light intact. It also modifies many
library functions, assigning to them more accurate types.

An alternative approach to forming more accurate datatypesuse nested datatypes [2]. For instance,
a nested datatype exactly representing red-black treebeaeadily formed. However, there exist various
significant differences between DML-style dependent tyqes nested datatypes, which we will illustrate
later.

We usetypewriter font in this paper to represent code in de Caml, all of which hawnherified
in a prototype implementation. A significant consequencdiefintroduction of dependent types is the loss
of the notion of principal types in DML. For instance, bothtog following types can be assigned to an
implementation in de Caml which zips two lists together.

'a list * 'b list -> (‘a * 'b) list
{n:nat}a list(n) * 'b list(n) -> ('a * 'b) list(n)

The first type has the usually meaning, while the second ompdiémthat for every natural number, the
function yields a list with length when given a pair of lists with lengti. Notice that we us& list(n)

for the type of a list with lengtln in which every element is of typ&a . If a dependent type is to be
assigned to a function in DML, it is the responsibility of fi@grammer to annotate the function with such a
dependent type. This is probably the most significant difiee between the programming styles in ML and
in DML. In practice, we observe that the type annotations ippical DML program often constitutes less
than 20% of the entire code. Since dependent type annosat&noften lead to more accurate reports of type
error messages and serve as informative program docurientae feel that the DML programming style
is acceptable from a practical point of view. We will provisiame concrete examples for the reader to judge
this claim, including implementations of red-black treesl dinomial heaps. Both of these implementations
are adopted from the corresponding ones in [17]. The impieati®ns in de Caml have several advantages
over the original ones. We have verified more invariants andle Caml implementations. For instance, it
is verified in the type system of de Caml that the function Wwhirerges two binomial heaps indeed yields
a binomial heap. Also the type annotations in the implentants, which can be fully trusted since they
are mechanically verified, offer some pedagogical valueg f&¢l it is easier to understand the de Caml
implementations because the reader can reason in the pessktiese informative dependent types.

Inthis paper, itis neither possible nor necessary to foypaiesent DML. Instead, we focus on presenting
some concrete examples in the programming langdag@éam) a variant of DML, as well as some intuitive
explanation. We refer the interested reader to [22] for trenfl development of DML, though we strongly
believe that this is largely unnecessary for comprehentiisgpaper.

The rest of the paper is organized as follows. In Section 2gwea brief overview of the types in DML.
We then introduce de Caml in Section 3, presenting some afdiis features and illustrating type-checking
in de Caml with a short example. Some case studies are givBedtion 4, including implementations of
Braun trees, random-access lists, red-black trees andrighbeaps. Lastly, we discuss some related work
and then conclude.

2 Typesin Dependent ML

In this section, we present a brief explanation on the typd3ML. The reader is encouraged to skip this
section and read it later, though it could be helpful to gawme intuition before studying the concrete
examples in Section 3.

Intuitively speaking, dependent types are types which deéjpa the values of language expressions. For
instance, we may form a typet(i) for each integef to mean that every integer expression of this type must
have value, thatis,int(i) is a singleton type. Note thais the expression on which this type depends. We use
the nameype index expressidor such an expression. There are various compelling reasoich as practical
type-checking, for imposing restrictions on expressiomgcv can be chosen as type index expressions. A

www.manaraa.com

index expressionsi,j == a|c|i+j|i—j|i*xj|i+j|min(i,j) | max(i,j) | mod(i,)

index propositions P == i<jli<jli>jli>jli=jli#j|PNP| PV P
indexsorts v == dnt|{a:y| P} |y *x7
index contexts ¢ == -|¢,a:v]| o, P

Figure 1: The syntax for type index expressions

novelty in DML is to require that type index expressions bavelr only from a given constraint domain. For
the purpose of this paper, we restrict type index expressimimtegers. We present the syntax for type index
expressions in Figure 1, where we usdor type index variables and for a fixed integer. Note that the
language for type index expressions is typed. Wesagsesfor the types in this language in order to avoid
potential confusion. We usdor the empty index variable context and omit the standartirsprules for this
language. We also use certain transparent abbreviatiool,as0) < i < j which stands fof) < i A < j.
The subset soda : v | P} stands for the sort for those elements of spwhich satisfy the propositio#?.
For example, we useatas an abbreviation for the subset sprtt: int | a > 0}.

Types in DML are formed as follows. We ua€for type variables and for type constructors.

types 7 = al|(m,...,)0@) |1 || 2| Ha:yr|Za:y.7

For instance]ist is a type constructor an@nt)list(n) stands for the type of an integer list of length
Ila : v.r andXa : .7 form a universal dependent type and an existential depérigle®, respectively.
For instance, the universal dependent t¥pe: nat.(int)list(a) — (int)list(a) captures the invariant of a
function which, for every natural number returns an integer list of lengihwhen given an integer list of
lengtha. Also we can use the existential dependent t¥jae: nat.(int)list(a) to mean an integer list of
some unknown length. We demonstrate how a type construgctiidlared in Section 3.

The typing rules for this language should be familiar fromegpendently typed-calculus (such as the
ones underlying Coq or NuPrl). The critical notiontgpe conversionises the judgment - 7, = 7, which
is the congruent extension of equality on index expresdioasbitrary types:

pETn=T - =T, oEI={

GF (1i,...,10)0(i) = (11,...,7,)0(i")
prm=1 ¢Fm=1 $FTi=n gFm =1

O T xT =T % T obm o>n=1 o1

o, a:vFT=7 ¢,a:yF1T=7
¢oFTa:~vr=Ha:~.7 oFXa:vy7=%a:vy.7

Notice that it is the application of these rules which getes@onstraints. For instance, the constrairit
(a +n) + 1 =m+ nis generated in order to deriver (int)list((a +n) + 1) = (int)list(m + n).

Itis difficult to present more details given the space limita. For those who are interested, we point out
that the detailed formal development of DML can be found @] [2

3 Some Featuresin de Caml

In this section, we use examples to present some unique gnificint features in de Caml, preparing for the
case studies in Section 4.

The programmer often declares datatypes when programmivid.i For instance, the following datatype
declaration defines a type constructott.

www.manaraa.com

type 'a list = nil | cons of 'a * 'a list

Roughly speaking, this declaration states that a polymioit is formed with two constructorsil and
cons ,whosetypesara list anda * 'a list -> 'a list , respectively. We usa for a type
variable. However, the declared tyjae list is coarse. For instance, we cannot use the type to distinguis
an empty list from a non-empty one. In de Caml, this type carefined as follows.

refine 'a list with nat =
nil(0) | {n:nat} cons(n+1) 'a * ’'a list(n)

The clauseefine 'a list with nat means that we refine the tyfe list ~ with an index of sort
nat , thatis, the index is a natural number. In this case, thexstEnds for the length of a list.

e nil(0) means thanil is of type'a list(0) , that is, it is a list of lengtl.
e {n:nat} cons(n+1) of 'a * 'a list(n) means thatons is of type
{n:nat} 'a * ’a list(n) -> 'a list(n+1)

that is, for every natural number, cons yields a list of lengthn + 1 when given an element of type
'a and a list of lengtln. Note{n:nat} is a universal quantifier, which is usually writtenlds : nat
in type theory.

Now list types have become more informative. The followilngle defines the append function on lists. We
use[] fornil and:: as the infix operator focons .

let rec append = function

(. ys) > ys
| (x 2 xs, ys) -> x : append(xs, ys)
withtype {m:nat}{n:nat} 'a list(m)*a list(n)->’a list(m +n)

Thewithtype clause is a type annotation supplied by the programmerwdiiply states that the function
returns a list of length ofn. + n when given a pair of lists of lengths andn, respectively. We now present
an informal description about type-checking in this case.

For the first claus€], ys) -> ys , the type-checker assumes thiatis of typesa list(b) for
some index variableof sortnat . This |mpI|es that[], ys) is oftype'a list(0) * 'a list(b)
The type-checker then instantiatesandn with 0 andb, respectively, and verify that thes on the right S|de
of -> is of type’a list(0+b) . Sinceys is of type’a list(b) under assumption, the type-checker
generates a constraibit= 0+ b under the assumption thiats a natural number. This constraint can be easily
verified.

Let us now type-check the second cla@se:: xs, ys) -> x :: append(xs, ys) . As-
sume thaiks andys are of type'a list(a) and’a list(b) , respectively, whera andb are index
variables of sorhat . Then(x :: xs, ys) is of type’a list(a+1) * 'a list(b) , and we
therefore instantiate: andn with a + 1 andb, respectively. Also we infer that the right side:: ap-
pend(xs, ys) is of type'a list((a+b)+1) sincexs andys are assumed of typéea list(a)
and’a list(b) , respectively. We need to prove that the right side is of typelist(m+n) for

m = a + 1 andn = b. This leads to the following constraint,
(a+1)+b=(a+b)+1
which can be immediately verified under that assumptiondlaadd are natural numbers. This finishes type-

checking the above de Caml program. The interested readefeised to [22] for the formal presentation of
type-checking in DML.

www.manaraa.com

Clearly, a natural question is whether the typedppend can be reconstructed or synthesized. For such
a simple example, this seems highly possible. However, xperence indicates that it seems exceedingly
difficult in general to synthesize dependent types in pcacthough we have not formally studied this issue.

Instead of refining a type, it is also allowed to declare a ddpat type in de Caml. For instance, we can
declare the following.

datatype 'a list with nat = nil(0) | {n:nat} cons of 'a * 'a list (n)

The declaration is basically equivalent to the refinementnaele earlier. However, there is also a significant
difference. When we declare a refinement, we must be abledmpiret the corresponding unrefined types in
terms of refined ones. For example, after refining the tgpdist , we must interpret this type in terms
of the refined list type. We need existential dependent typethis purpose.’a list is interpreted as
[n:nat] 'a list(n) ,thatis,a list is'a list(n) for some (unknown) natural number Note
that[n:nat] is an existential quantifier, which is often written 88 : nat in type theory. This provides
a smooth interaction between ML types and dependent typggdse thaff is defined before the list type
is refined and its type i® list -> 'a list . After refining the list type, we can assign fahe type
([n:nat] 'a list) -> [n:nat] 'a list , thatis, f takes a list with unknown length and returns
a list with unknown length. This makes it possible foto be applied to an argument of dependent type, say,
int list(2) . This is also essential for ensuring backward compatjbéitvery important issue when the
use of existing ML code is concerned.

However, there is a need for imposing some restriction oatgpe refinement. We give a short example
to illustrate such a need. The datatypetree is declared as follows faall binary trees.

datatype 'a tree = Leaf | Node of 'a tree * 'a * 'a tree
Suppose we declare the following refinement, where the tygex standards for the height of a tree.

refine 'a tree with nat =
Leaf(0) | {h:nat} Node(h+1) of 'a tree(h) * 'a * 'a tree(h)

This refinement is problematic since the tyjbenat] 'a tree(h) now standards for the type of all
perfectbinary trees, and therefore it cannot be used to represemtrifinal’a tree , which is the type for

all binary trees. There is some syntactic restriction tlaatloe imposed to rule out such problematic datatype
refinements. We stop mentioning the restriction since itngp$y not needed in this paper.

There is another important use of existential dependeistylm order to guarantee practical type check-
ing in de Caml, we must make constraints relatively simplerréntly, we only accept linear integer con-
straints. This immediately implies that there are manyl{gge) constraints that are inexpressible in the type
system of de Caml. For instance, the following code implemearfilter function on a list which removes
from the list all elements not satisfying the propesty

let filter p = function
0->10

| x iz xs -> if p(x) then x :: (filter p xs) else (filter p xs)

In general, it is impossible to know the length of the Iitter p 1) without knowing whatp is.
Therefore, it is impossible to type the function using onfyversal dependent types. Nonetheless, we know
that the length offilter p xs) is less than or equal to that bf This invariant can be captured by
assignindilter the following types.

(a -> bool) -> {m:nat} 'a listtm) -> [n:nat | n <= m] ’a list(n)

Note thafn:nat | n <= m] standsfo®n : {a: nat| a < m}.
Another significant use of existential dependent types isefoesent a range of values. We can use
([n:nat] int(n)) array to represent the type for the vectors whose elements areahaumbers.

www.manaraa.com

datatype 'a brauntree with nat =
L(0)
| {mmat{n:nat | n <= m <= n+1}
B(m+n+1) of 'a * 'a brauntree(m) * ’'a brauntree(n) ;;

let rec diff k = function
L->0
| B(, I, r) ->
if k =0 then 1
else if k mod 2 = 1 then diff (k/2) | else diff (k/2 - 1) r
withtype {k:nati{n:nat | k <= n <= k+1}
int(k) -> 'a brauntree(n) -> int(n-k) ;;

let rec size = function
L->0]|B(,I,r->letn =sizerinl+n+n + diff n |
withtype {n:nat} 'a brauntree(n) -> int(n) ;;

Figure 2: An implementation of the size function on Brauretre

This is very useful for eliminating array bound checks at-tuime [20]. In general, we view that the use
of existential types in de Caml for handling functions lifidéer is crucial to the scalability of the type
system of de Caml since such functions are abundant in peacti

Lastly, we mention a convention in de Caml. After declarirdppendent type as follows,

datatype (ai,...,am)d With (sorty,...,sort,) =------

we may write(ry, ..., 7,,)d to stand for the following.

[ay : sorty] -+ [an : sort,].(T1, ..., Tm)d0(a1, ..., an)

For exampleja list stands fofn:nat] 'a list(n)

4 Case Studies

In this section, we present some examples to demonstratesthef dependent datatypes in capturing in-
variants in data structures. All these examples in de Cawe ls@en successfully verified in a prototype
compiler for de Caml, which is written on top of the Caml-ligtompiler [14]. The claim we make is that
dependent datatypes enable the programmer to implemenrithlgs in a way that is more robust and easier
to understand.

4.1 Braun Trees

A Braun tree is a balanced binary tree [4] such that for evegnbh node in the tree, its left subtree is
either the same size as its right subtree, or contains one eiement. Braun trees can be used to give neat
implementations for flexible arrays and priority queues[16], there is an algorithm which computes the
size of a Braun tree i (log” n) time, wheren is the size of the Braun tree. We implement this algorithm
in Figure 2. We first declare a dependent datatgpdrauntree(n) for Braun trees of size. Note that

the type ofBis

www.manaraa.com

{m:nat}{n:nat | n <= m <= n+l1}
'‘a * 'a brauntree(m) * ’a brauntree(n) -> 'a brauntree(m+n+1)

which states thaB yields a Braun tree of sizen + n + 1 when given an element, a Braun tree of size
and a Braun tree of size wheren < m < n + 1 holds. This exactly captures the invariant on Braun trees
mentioned above.

Given a natural numbér and a Braun tree of size satisfyingk < n < k + 1, the functiondiff yields
the difference betweem andk. With this function, the size function on Braun trees can bfned straight-
forwardly. An interesting point in this example is that tlypé of the functiorsize precisely indicates that
this is the size function on Braun trees since it states thafunction returns an integer of valwewhen
given a Braun tree of size.

The reason thadiff n [yields the difference betwedt, the size ofl, andn can be found in [16].
We give some brief explanation below. It is clear tliat- » is either0 or 1. If [is a leaf,|/| — n must beD.
Otherwise|l| = 1 + |I'| + |r'|, wherel’ andr' are the left and right branches bfrespectively. It is odd,
thenn =1+ |n/2] + |n/2] and thus

[=n = T+ [+ =1+ [n/2] + [n/2] = ('] = [n/2]) + ('] = [n/2])
Sincell’| — 1 < |r'| < |I'| holds, we have the following.
2|~ [n/2]) ~ 1< 1]~ n < 20| — [n/2))

It can now be readily verified that| — n = 1if |I'| — [n/2] = 1 and|l| —n = 0if |I'| — [n/2] = 0.
Therefore, ifn is odd,|l| — n = [I'| — |n/2]. With some similar reasoning, we can eventually prove the
correctness of the defined functidiif

This example also shows that although the datatype typeddicn for Braun trees contains size in-
formation, this information is not available at run-timedatmerefore a recursive walk through the tree is
necessary to determine the size of a tree.

4.2 Random-AccessLists

A random-access list is a list representation such thablidtup (update) can be implemented in an efficient
way. In this case, the lookup (update) function tak€kg n) time in contrast to the usuél(n) time (worst
case), where is the length of the input list.

We present an implementation of random-access list in Eg3rand 4. We first declare the depen-
dent datatype for random-access lists. Note #hatlist(n) stands for the type of random-access lists
with lengthn. Nil andOne are the constructors for empty and singleton random-adistssrespectively.
Furthermore, the constructoEren andOdd are to form random-access lists of even and odd lengths, re-

spectively. Ifll andl2 representlists,...,z, andy,...,y, for somen > 0, respectively, thetven
(11, 12) represents the list,, y1,...,%,, y,. Similarly, if [1 andl2 representlistx,...,z,, Try1
andy, . . ., y, forsomen > 0, respectivelyQdd(I1, 12) representsy, vy, ..., Tn, Yn, Tnr1. With such

a data structure, we can implement a lookup (update) fumetiorandom-access list which tak@slog n)
time. A crucial invariant on this data structure is titat andl2 must have the same lengthBlen(I1,
I2) is formed orl1l contains one more element thin if Odd(I1, 12) is formed. This is clearly cap-
tured by the dependent datatype declaratioridorlist . The functioncons appends an element to a
list anduncons decomposes a list into a pair consisting of the head and thefte list. Note that the
type ofuncons requires this function only to be applied to a non-empty Bsithcons anduncons takes
O(logn) time.

The functionlookup_safe deserves some explanation. The type of this function inegcthat it can
be applied ta andl only ifi is a natural number and its value is less than the length dfotice that the
look up i | simply returnx when the matches the pattel@ne x. There is no need to check whether

www.manaraa.com

datatype 'a rlist with nat =
Nil(0)
| One(1) of 'a
| {n:nat | n > 0} Even(n+n) of ’a rlist(n) * 'a rlist(n)
| {n:nat | n > 0} Odd(n+n+1) of 'a rlist(n+1) * ’a rlist(n) ;;

exception Subscript ;;

let rec cons x = function
Nil -> One x
| One y -> Even(One(x), One(y))
| Even(l1, 12) -> Odd(cons x 12, I1)
| Odd(l1, 12) -> Even(cons x 12, I1)
withtype {n:nat} 'a -> ’a rlist(n) -> ’a rlist(n+1) ;;

let rec uncons = function
One x -> (x, Nil)

| Even(l1, 12) ->
let (x, 11) = uncons I1 in begin
match 11 with
Nil -> (x, 12) | _ -> (x, Odd(I2, 11))
end

| Odd(l1, 12) -> let (x, I11) = uncons I1 in (x, Even(I2, 11))
withtype {n:nat | n > 0} 'a rlist(n) -> 'a * ’'a rlist(n-1) ;;

let rec length = function
Nil -> 0
| One ->1
| Even (11,) -> 2 * (length I1)
| Odd (, 12) -> 2 * (length 12) + 1
withtype {n:nat} ’a rlist(n) -> int(n) ;;

let rec lookup_safe i = function
One x -> X
| Even(l1, 12) ->
if i mod 2 = O then lookup_safe (i / 2) I1
else lookup_safe (i / 2) 12
| Odd(I1, 12) ->
if i mod 2 = 0 then lookup_safe (i / 2) I1
else lookup_safe (i / 2) 12
withtype {i:nati{n:nat | i < n} int(i) -> 'a rlist(n) -> 'a ;;

Figure 3: An implementation of random-access lists in de G§m

www.manaraa.com

let rec update_safe i x = function
One y -> One x
| Even(l1, 12) ->
if i mod 2 = 0 then Even(update_safe (i / 2) x 11, 12)
else Even(ll, update_safe (i / 2) x 12)
| Odd(I1, 12) ->
if i mod 2 = 0 then Odd(update_safe (i / 2) x I1, 12)
else Odd(l1, update_safe (i / 2) x 12)
withtype {i:nati{n:nat | i < n}
int(i) -> 'a -> 'a rlist(n) -> ’a rlist(n) ;;

Figure 4: An implementation of random-access lists in de Géin

datatype 'a rlist with nat =
Nil(0)
| One(1) of 'a
| {n:nat | n > 0} Even(n+n) of (a * 'a) rlist(n)
| {n:nat | n > 0} Odd(n+n+1) of 'a * ('a * 'a) rlist(n)

Figure 5: A nested dependent datatype for random access list

i is0: it must be sincé is a natural number and is less than the length 6f, which is1 in this case. The
usual lookup function can be implemented as usual or asfello

let rec lookup i | =
if i < O then raise Subscript
else if i >= length | then raise Subscript
else lookup_safe i |
withtype int -> ’'a rlist -> 'a ;;

We point out that an implementation of random-access Igstsvien in [17], which uses the feature of
nested datatypes. Okasaki’s implementation supports@rage)O(1)-time consing and unconsing opera-
tions and are thus superior to our implementation in thipeges On the other hand, the update function in
Okasaki's implementation requires the use of some highderdeature, which does not exist in our imple-
mentation. We view this as an edge of our implementation.

It should be stressed that nested datatypes and DML-stplendkent types are orthogonal to each other.
For instance, we can form a nested dependent datatype ineFigior random-access lists, imitating a cor-
responding datatype in [17]. Unfortunately, we currentipoot experiment with such a dependent datatype
because polymorphic recursion is not supported in Carhitlig

4.3 Red-Black Trees

A red-black tree (RBT) is a balanced binary tree which satisthe following conditions: (a) all leaves are
marked black and all other nodes are marked either red okp(axfor every node there are the same number
of black nodes on every path connecting the node to a leafttamdumber is called thelack heightof the
node; (c) the two sons of every red node must be black. It isyanoon practice to use the RBT data structure
for implementing a dictionary. We declare a datatype in Fégy which precisely captures these properties
of a RBT.

www.manaraa.com

type key == int ;;
sort color == {aiint | 0 <= a <= 1} ;;

datatype rbtree with (color, nat, nat) =
E(0, 0, 0)
| {cl:color}{cr:color{bh:nat}
B(0, bh+1, 0) of rbtree(cl, bh, 0) * key * rbtree(cr, bh, 0)
| {cl:color}{cr:color}{bh:nat}
R(1, bh, cl+cr) of rbtree(cl, bh, 0) * key * rbtree(cr, bh, 0) ;

let restore = function
(R(R(a, x, b), y, ¢), z, d) -> R(B(a, x, b), y, B(c, z, d)
| (R(@, x, R(b, vy,), z, d) -> R(B(a, x, b), y, B(c, z, d))
| (a, x, R(R(b, vy, ¢), z, d)) -> R(B(a, x, b), y, B(c, z, d))
| (@, x, R(b, y, R(c, z, d))) -> R(B(a, %, b), y, B(c, z, d))
| (@, x, b) -> B(a, x, b)
withtype {cl:colorH{cr:colori{bh:nat}{vl:nat}{vr:nat | vi+vr <= 1}
rbtree(cl, bh, vl) * key * rbtree(cr, bh, vr) ->
[c:color] rbtree(c, bh+1, 0) ;;

exception Item_already_exists ;;

let insert x t =
let rec ins = function
E -> R(E, X, E)
| B(a, y, b) -> if x <y then restore(ins a, y, b)
else if y < x then restore(a, y, ins b)
else raise Item_already_exists
| R(a, y, b) -> if x < y then R(ins a, y, b)
else if y < x then R(a, vy, ins b)
else raise Item_already_exists
withtype {c:color}{bh:nat}
rbtree(c, bh, 0) ->
[c:color][vinat | v <= c] rbtree(c’, bh, v) in
match ins t with
R(@a, y, b) -> B(a, y, b)
| t >t
withtype {c:colori{bh:nat} key -> rbtree(c, bh, 0) ->
[bh:nat] rbtree(0, bh’, 0) ;;

Figure 6: A red-black tree implementation

10

www.manaraa.com

A sortcolor is declared for the type index expressions representingdlars of nodes. We usefor
black and1 for red. For simplicity, we use integers for keys. Of coursee can readily use other ordered
data structures. The typbtree is indexed with a triplgc, bh, v) , wherec is the color of the node,
bh is the black height of the tree, amds the number of color violations. We record one color vimatif a
red node is followed by another red node, and thus a RBT mwst ha color violations. Clearly, the types
of constructors indicate that color violations cano onlgurcat the top node. Also, notice that a leaf, that is,
E, is considered black. Given the datatype declaration amé@xplanation, it should be clear that the type of
a RBT is simply

[c:color][bh:nat] rbtree(c,bh,0) ,

that is, a tree which has some top node celand some black height. but no color violations.

It is an involved task to implement RBT. The implementatiom present is basically adopted from the
one in [17], though there are some minor modifications. Weamhow the insertion operation on a RBT is
implemented. Clearly, the invariant we intend to capturhét inserting an entry into a RBT yields another
RBT. In other words, we intend to declare that the insertiparation is of the following type.

key->[c:color][bh:nat] rbtree(c,bh,0)->[c:color][bh: nat] rbtree(c,bh,0)

If we insert an entry into a RBT, some properties on RBT mayibkated. These properties can be restored
through some rotation operations. The functieastore in Figure 6 is defined for this purpose.

The type ofrestore is easy to understand. It states that this function takesitip, @ tree with at most
one color violation and a RBT and returns a RBT tree. The twedrin the argument must have the same
black heighth for some natural numbernh and the returned RBT has black height+ 1. This information
can be of great help for understanding the code. If the infdion had been informally expressed through
comments, it would be difficult to know whether the commerata be trusted. Also notice that it is not
trivial at all to verify the information manually. We couldhagine that almost everyone who did this would
appreciate the availability of a type-checker to perforawitomatically.

There is a great difference between type-checking a pattetiching clause in DML and in ML. The
operational semantics of ML requires that pattern matchiagerformed sequentially, that is, the chosen
pattern matching clause is always the first one which matatgigen value. For instance, in the definition
of the functionrestore , if the last clause is chosen at run-time, then we know theraemnt ofrestore
does not match either of the clauses ahead of the last one.mt be taken into account when we type-
checking pattern matching in DML. One approach is to expaaitems into disjoint ones. For instance, the
pattern(a, x, b) expandsint@6 patternspattern,, x, patterns), wherepattern, andpattern, range
over the following six pattern®B , , B) ,RB , , E) ,R(E, , B) ,R(E, _, E) ,

B _, andE. Unfortunately, such expansion may lead to combinatoxplasion. An alternative is to require
the programmer to indicate whether such expansion is neetlieither of these is currently available in
de Caml, and the author has taken the inconvenience to exgateins into disjoint ones when necessary.
We emphasize that the code in Figure 6 must be thus expandedento pass type-checking in de Caml.
Though this can be fixed straightforwardly, it is currenthyclear what method can solve the problem best.

The complete implementation of the insertion operatiotofes immediately. Notice that the type of
functionins indicates thains may return a tree with one color violation if it is applied tdrae with red
top node. This is fixed by replacing the top node with a blaakfam every returned tree with a red top node.

Moreover, we can use an extra index to indicate the size of & RB/e do so, we can then show that the
insert function always returns a RBT of size+ 1 when given a RBT of size (note that an exception is
raised if the inserted entry already exists in the tree)agdeefer to [23] for detalils.

4.4 Binomial Heaps

A binomial tree is defined recursively; a binomial ttBg with rank(consists of a single node and a binomial
tree By,1 of rankk + 1 consists of two linked binomial tred3;, of rankk such that the root of onB, is the

11

www.manaraa.com

leftmost son of the otheB,. A binomial heapH is a collection of binomial trees that satisfy the propesxtie
(a) each binomial tree i# is heap-ordered, that is, the key of a node is greater thajualeo the key of its
parent, and (b) there is at most one binomial tre&imwhose root has a given degree. Please refer to [6] for
details.

We declare some datatypes in Figure 7 for forming binomialise The typdéree(n) s for binomial
trees of rankn, and the typdreelist(n) is for a list of binomial trees witldecreasinganks and, =
m + 1 if the list is not empty, where: is the rank of the first binomial tree in the list. We represehinomial
heap as a list of binomial trees withcreasingranks. For a heap of typgeeap(n) , if n = 0 then the heap
is empty; otherwises = m + 1 wherem is the rank of the first binomial tree in the heap. Notice that w
attach rank to each tree node in order to efficiently comphaeank of a tree while using the type Nbde
to guarantee that the first component of each node indeedsemis the rank of that node.

Notice that the datatype for binomial treéses notapture the invariant stating that these trees are heap-
ordered. This seems to be beyond the reach of dependenyuizdatAlso note that we would not be able
to capture some of the invariants if we used the ordinarycliststructors, that isjil andcons , to form
tree lists. This leads to the introduction ®&@mpty , Tcons , Hempty andHcons. This special feature in
programming with dependent datatypes has an unpleasasgegoence, which we mention in Section 5.

The implementation in Figure 7 and 8 is largely adopted frdm].[Since the type for the function
merge is relatively complex, we explain it as follows. This typatsts that given two binomial heaps of
typesheap(m) andheap(n) , respectively, this function returns a binomial heap ofetjyeap(l) for
somel suchthat = m if n =0,0rl =nif m =0, orl > min(m,n) > 0 otherwise.

5 Limitation

We mention some limitations of dependent datatypes in #aan.

In order to capture invariants, we may have to declare neatgla¢s instead of using existing ones. For
instance, we declared the datatytpeelist in Figure 7 instead of using the existing list constructors t
form a list of trees. The reason is that we wanted to only fdats lof binomial trees with decreasing rank.
Similarly, we introduced the datatypeap to capture the invariant that a binomial heap is a list ofsnegh
increasing order. This forces us to define the functmrheap later, which essentially reverses a list of
trees and append it to a heap. If we used the existing listieanisrs without declaring either dfeelist
andheap , we could then use some existing function on lists insteatkefiingto_heap . In order words,
using dependent datatypes may lose some opportunitiesdierreuse.

Another limitation can be illustrated using the followingaenple. LetB be the constructor declared
in Figure 2, which is used to form Braun trees. Suppose Btat |, r) occurs in the code whetthe
programmer knowfor some reason thatis the same size asor contains one more element but this cannot
be established in the type system of de Caml. In this caseatie is to be rejected by the de Caml type-
checker, though the code will cause no run-time error (if westtthe programmer). The situation is very
similar to the case where we move from an untyped programtaimguage into a typed one. A solution to
this problem is that we introduce some run-time checks. Rkstiance, we may define the following function
and replac®(x, |, r) with make_brauntree x | r

let make brauntree x | r =
let m = size(l) and n = size(r) in
if n <= m & & m <= n+l1 then B(x, I, r) else raise lllegal_argument
withtype int -> brauntree -> brauntree -> brauntree

The functionrmake_brauntree can readily pass type-checking in de Caml (we refer the ésted reader
to [22] for further details). The penalty in this case is timgtke_brauntree takesO(log® n) time to build
a tree of sizen, though this can be avoided if we store size information chezode.

In general, if the programmer anticipates the above sitnath occur frequently, then she or he should
either make sure that run-time checks can be done efficiemtiwitch back to non-dependent datatypes.

12

www.manaraa.com

datatype tree with nat =
{n:nat} Node(n) of int(n) * int * treelist(n)

and treelist with nat =
Tempty(0)
| {m:nat{n:nat | m >= n} Tcons(m+1) of tree(m) * treelist(n)

datatype heap with nat =
Hempty(0)
| {m:nat{n:nat | n = 0 V m+1 < n} Hcons(m+1) of tree(m) * heap(

let rank = function Node(r, _,) ->r
withtype {n:nat} tree(n) -> int(n) ;;

let root = function Node(, x,) -> x
withtype {n:nat} tree(n) -> int ;;

let link (Node(r, x1, tsl) as tl) = function
Node(, x2, ts2) as t2 ->
if (x1 <= x2) then Node(r+1, x1, Tcons(t2, tsl))
else Node(r+1, x2, Tcons(tl, ts2))

withtype {r:nat} tree(r) -> tree(r) -> tree(r+1) ;;

let rec insTree t = function
Hempty -> Hcons(t, Hempty)
| Hcons(t', ts’) as ts ->
if rank t < rank t' then Hcons(t, ts) else insTree (link t t') ts
withtype {r:nat{n:nat | n = 0 V r < n}
tree(r) -> heap(n) -> [lnat | | > r] heap(l) ;;

let insert x hp = insTree (Node(0, x, Tempty)) hp
withtype int -> [n:nat] heap(n) -> [n:nat | n > 0] heap(n) ;;

let rec merge = function
(hpl, Hempty) -> hpl
| (Hempty, hp2) -> hp2
| (Hcons(tl, hpl) as hpl), (Hcons(t2, hp2’) as hp2) ->
if rank t1 < rank t2 then Hcons(tl, merge(hpl’, hp2))
else if rank t1 > rank t2 then Hcons(t2, merge(hpl, hp2))
else let hp = merge(hpl’, hp2’) in insTree (link t1 t2) hp
withtype {m:nat}{n:nat} heap(m) * heap(n) ->
fnat [n =0AT=mVmMm=0AI=n)V
(I >= min(m, n) > 0)] heap(l) ;;

Figure 7: An implementation of binomial heapin de Caml (1)

13

n) ;;

www.manaraa.com

exception Heap_is_empty ;;

let rec removeMinTree = function
Hempty -> raise Heap_is_empty
| Hcons(t, Hempty) -> (t, Hempty)
| Hecons(t, hp) ->
let (t', hp) = removeMinTree hp in
if root t < root t' then (t, hp) else (t', Hcons(t, hp’))
withtype {n:nat}
heap(n) ->
[rnat][llnat | | = 0 V | >= n > Q] (tree(r) * heap(l)) ;;

let findMin hp = let (t,) = removeMinTree hp in root t
withtype {n:nat} heap(n) -> int ;;

let rec to_heap hp = function
Tempty -> hp
| Tcons(t, ts) -> to_heap (Hcons(t, hp)) ts
withtype {m:nat}{n:nat [m = 0 V. m > n}
heap(m) -> treelist(n) -> heap ;;

let deleteMin hp =
let (Node(_, X, ts), hp) = removeMinTree hp
in merge (to_heap Hempty ts, hp)

withtype heap -> heap ;;

Figure 8: An implementation of binomial heap in de Caml (Il)

We recommend that the programmer avoid complex encodingswking dependent datatypes to capture
invariants in data structures.

6 Related Work

The use of type systems in program error detection is ulmgsit Usually, the types in general purpose pro-
gramming languages such as ML and Java are relatively ieegjwe for the sake of practical type-checking.
In these languages, the use of types in program verificasi@ffective but too limited. Our work can be
viewed as providing a more expressive type system to alleyptbgrammer to capture more program prop-
erties through types and thus catch more errors at comipile-tAs a consequence, types can serve as infor-
mative program documentation, facilitating program coefgnsion. We assign priority to the practicality
of type-checking in our language design and emphasize the foe restricting the expressiveness of a type
system.

In [21], we have compared our work with some traditional defent type systems such as the ones
underlining Coq [8] and NuPrl [5], which are far more refinédmn the type system of DML. There, we also
give comparison to the notion of indexed types [25] (an easlersion of which is described in [24]), the
notion of refinement types [9, 7], the notion of sized typed [&nd the programming language Cayenne [1].

There have been many recent studies on the use of nestegdpdat$i2] in constructing (sophisticated)
datatypes to capture more invariants in data structuresinBtance, a variety of examples can be found in

14

www.manaraa.com

[3, 18, 10, 12, 11]. We feel that the advantage of this apgraacthat it requires relatively minor language
extensions, which may include polymorphic recursion, kigbrder kinds, rank-2 polymorphism, to existing
functional programming languages such as Haskell, whipetyhecking in DML is much more involved.
On the other hand, this approach seems less flexible, oftpririeg some involved treatment at both type
and program level. The important notion of datatype refinenie DML cannot be captured with nested
datatypes. For instance, it is impossible to form a nestéatylae that can capture the notion of the length of
a list since this would imply that one could simply use typedistinguish non-empty lists from empty ones.
In general, we think that these two approaches are esdgmtitiiogonal in spite of some similar motivations
behind their development and they can be readily combiné&ulitie effort.

7 Conclusion

The use of dependent datatypes in capturing invariantsti steuctures is novel. This practice can offer

many advantages when we implement algorithms in advan@egiganming languages equipped with such a
mechanism. The most significant advantage is probably igraro error detection. We argued in Section 1

that the imprecision of datatypes in Standard ML or Haskeltapturing invariants can be a rich source

for run-time program errors. In addition, the dependenetgnnotations supplied by the programmer are
mechanically verified and can thus be fully trusted. They sanve as valuable program documentation,
facilitating program understanding. There are also variagges of dependent datatypes in compiler optimiza-
tion.

Type-checking in DML is largely independent of the size ofragram since a type-checking unit is
roughly the body of a toplevel function. In general, what t@e in type-checking is the difficulty level of
the properties that are to be checked. A more serious issu@ngo report error messages in case of type
errors. The type-checking in de Caml implements a top-dawile slgorithm, which usually pinpoints to the
location of a type error. Unfortunately, the author findsttihanay often be surprisingly difficult to figure
out the cause of a type error. On the positive side, the tyyaeler of de Caml is often capable of detecting
a variety of subtle errors. For instance, the author once &sen(l1, 12) to form a random-list (in
Figure 3) and the type-checker raised an error becauseld oot prove thatl cannot beNil . If this had
gone unnoticed, it would have invalidated some invariastiaged by the programmer, potentially causing
(difficult) run-time errors. We are currently in the procedsgathering more statistics regarding the use of
de Caml.

The usual focus of data structure design is mainly on enhgrtaine and/or space efficiency, and less
attention is paid to program error detection. The introgucof dependent datatypes provides an opportunity
to remedy the situation. In general, we are interested imptong the use of light-weight formal methods in
practical programming, enhancing the robustness of progralVe have presented some concrete examples
of dependent datatypes in this paper in support of such agiom We hope these examples can raise the
awareness of dependent datatypes and their use in implemeatgorithms.

8 Acknowledgment

| thank Chris Okasaki, Ralf Hinze and an anonymous refereéhfeir constructive comments, which have
undoubtedly raised the quality of the paper.

References

[1] Lennart Augustsson. Cayenne — a language with depertgipas. InProceedings of the 3rd ACM SIGPLAN
International Conference on Functional Programmipgges 239-250, 1998.

[2] Richard Bird and Lambert Meertens. Nested datatypesMathematics of program constructippages 52—67.
Springer-Verlag LNCS 1422, 1998.

15

www.manaraa.com

[3] Richard Bird and Ross Paterson. de bruijn notation asstededatatypeslournal of Functional Programminglo
appear.

[4] W. Braun and M. Rem. A logarithmic implementation of feka arrays. Technical Report Memorandum MS83/1,
Eidenhoven University of Technology, 1983.

[5] Robert L. Constable et allmplementing Mathematics with the NuPrl Proof Developn&ygtem Prentice-Hall,
Englewood Cliffs, New Jersey, 1986.

[6] Thomas H. Corman, Charles E. Leiserson, and Ronald Le®Rivintroduction to Algorithms The MIT Press,
Cambridge, Massachusetts, 1989.

[7] Rowan Davies. Practical refinement-type checking. &hesoposal, November 1997.

[8] Gilles Dowek, Amy Felty, Hugo Herbelin, Gérard Huet, &Murthy, Catherine Parent, Christine Paulin-Mohring,
and Benjamin Werner. The Coq proof assistant user’'s guidappBrt Techniques 154, INRIA, Rocquencourt,
France, 1993. Version 5.8.

[9] Tim Freeman and Frank Pfenning. Refinement types for ML ACM SIGPLAN Conference on Programming
Language Design and Implementatigages 268-277, Toronto, Ontario, 1991.

[10] Ralf Hinze. Numerical Representations as Higher-©idiested Types. Technical Report IAI-TR-98-12, Institut
fur Informatik I1l, Universitat Bonn, April 1998.

[11] Ralf Hinze. Constructing Red-Black Trees. Mmoceedings of Workshop on Algorithmic Aspects of Advanced
Programming Language$eptember 1999.

[12] Ralf Hinze. Manufacturing Datatypes. Rroceedings of Workshop on Algorithmic Aspects of AdvaRecedram-
ming LanguagesSeptember 1999. Also available as Technical Report IAJ9BR5, Institut fur Informatik 111,
Universitat Bonn.

[13] John Hughes, Lars Pareto, and Amr Sabry. Proving theectitess of reactive systems using sized types. In
Conference Record of 23rd ACM SIGPLAN Symposium on Prexigfl Programming Languagegsages 410-423,
1996.

[14] INRIA. Caml-light. http://caml.inria.fr

[15] Robin Milner, Mads Tofte, Robert W. Harper, and D. Ma&@u. The Definition of Standard MLMIT Press,
Cambridge, Massachusetts, 1997.

[16] Chris Okasaki. Three Algorithms on Braun Trees by Cldi@saki.Journal of Functional Programming (6):661—
666, November 1997.

[17] Chris OkasakiPurely Functional Data StructuresCambridge University Press, 1998.

[18] Chris Okasaki. From Fast Exponentiation to Square Mest An Adventure in Types. IRroceedings of the 4th
ACM SIGPLAN International Conference on Functional Pragraing September 1999.

[19] Simon Peyton Jones et al. Haskell 98 — A non-strict, lufnctional language. Available from
http://www.haskell.org/onlinereport/ , February 1999.

[20] H. Xi and F. Pfenning. Eliminating array bound checkitigough dependent types. Proceedings of ACM
SIGPLAN Conference on Programming Language Design andelmgmitation pages 249-257, Montreal, June
1998.

[21] H. Xi and F. Pfenning. Dependent types in practical paogming. InProceedings of ACM SIGPLAN Symposium
on Principles of Programming Languaggsges 214-227, San Antonio, January 1999.

[22] Hongwei Xi. Dependent Types in Practical Programmin&hD thesis, Carnegie Mellon University, 1998. pp.
viii+189. Available ashttp://www.cs.cmu.edu/"hwxi/DML/thesis.ps

[23] Hongwei Xi. Some programming examples in de Caml. Al at
http://www.cse.ogi.edu/"hongwei/DML/deCaml/examples /,1999.

[24] Christoph Zenger. Indexed typeBheoretical Computer Scienck37:147-165, 1997.
[25] Christoph Zengeindizierte TypenPhD thesis, Fakultat fur Informatik, Universitat Ksmihe, 1998. Forthcoming.

16

www.manaraa.com

