
www.manaraa.com

Dependently Typed Data Strutures�
Hongwei Xi

Oregon Graduate Institute

Abstract

The mechanism for declaring datatypes in functional programming languages such as ML and Haskell
is of great use in practice. This mechanism, however, often suffers from its imprecision in capturing the
invariants inherent in data structures. We remedy the situation with the introduction of dependent datatypes
so that we can model data structures with significantly more accuracy. We present a few interesting ex-
amples such as implementations of red-black trees and binomial heaps to illustrate the use of dependent
datatypes in capturing some sophisticated invariants in data structures. We claim that dependent datatypes
can enable the programmer to implement algorithms in a way that is more robust and easier to understand.

1 Introduction

The mechanism that allows the programmer to declare datatypes seems indispensable in functional program-
ming languages such as Standard ML [15] and Haskell [19]. In practice, we often encounter situations where
the declared datatypes do not accurately capture what we really need. For instance, if what we need is a
data structure for the pairs of integer lists of the same length, we often declare a datatype in Standard ML or
Haskell that is forall pairs of integer lists. This inaccuracy problem is often a rich source for program errors.
A typical scenario is that a function which should only receive as its argument a pair of integer lists of the
same length is mistakenly applied to a pair of integer lists of different lengths. Unfortunately, such a mistake
causes no type errors if pairs of integer lists of equal length are given a type that is for all pairs of integer lists,
and thus can usually hide in a program unnoticed until at run-time, when debugging often becomes much
more demanding than at compile-time.

The inaccuracy problem becomes more serious when we start toimplement more sophisticated data struc-
tures such as red-black trees, binomial heaps, ordered lists, etc. There are some relatively complex invariants
in these data structures that we must maintain in order to implement them correctly. For instance, a correct
implementation of an insertion operation on a red-black tree should always yield a red-black tree. If we can
form a datatype to precisely capture the properties of a red-black tree, then it becomes possible to detect
a program error through type-checking when such an error leads to the violation of one of these captured
properties. This is evidently a desirable feature in programming if it can be made practical.

The need for forming more accurate datatypes partially motivated the design of Dependent ML (DML),
an enrichment of ML with a restricted form of dependent types. More precisely, DML is a language schema.
Given a constraint domainC, DML(C) is the language in the schema where all type index expressions are
drawn fromC. Roughly speaking, a type index expression is simply a term that can be used to index a type.
Type-checking in DML(C) can then be reduced to constraint satisfaction inC. In this paper, we restrictC
to some integer domain and use the name DML for this particular DML(C). A variant of DML, de Caml,
has been implemented on top of Caml-light [14]. This implementation essentially replaces the front-end of�Partially supported by the United States Air Force MaterielCommand (F19 628-96-C-0161) and the Department of Defense.

1

www.manaraa.com

Caml-light with a dependent type-checker and keeps the back-end of Caml-light intact. It also modifies many
library functions, assigning to them more accurate types.

An alternative approach to forming more accurate datatypesis to use nested datatypes [2]. For instance,
a nested datatype exactly representing red-black trees canbe readily formed. However, there exist various
significant differences between DML-style dependent typesand nested datatypes, which we will illustrate
later.

We usetypewriter font in this paper to represent code in de Caml, all of which have been verified
in a prototype implementation. A significant consequence ofthe introduction of dependent types is the loss
of the notion of principal types in DML. For instance, both ofthe following types can be assigned to an
implementation in de Caml which zips two lists together.

’a list * ’b list -> (’a * ’b) list
{n:nat}’a list(n) * ’b list(n) -> (’a * ’b) list(n)

The first type has the usually meaning, while the second one implies that for every natural numbern, the
function yields a list with lengthn when given a pair of lists with lengthn. Notice that we use’a list(n)
for the type of a list with lengthn in which every element is of type’a . If a dependent type is to be
assigned to a function in DML, it is the responsibility of theprogrammer to annotate the function with such a
dependent type. This is probably the most significant difference between the programming styles in ML and
in DML. In practice, we observe that the type annotations in atypical DML program often constitutes less
than 20% of the entire code. Since dependent type annotations can often lead to more accurate reports of type
error messages and serve as informative program documentation, we feel that the DML programming style
is acceptable from a practical point of view. We will providesome concrete examples for the reader to judge
this claim, including implementations of red-black trees and binomial heaps. Both of these implementations
are adopted from the corresponding ones in [17]. The implementations in de Caml have several advantages
over the original ones. We have verified more invariants in the de Caml implementations. For instance, it
is verified in the type system of de Caml that the function which merges two binomial heaps indeed yields
a binomial heap. Also the type annotations in the implementations, which can be fully trusted since they
are mechanically verified, offer some pedagogical values. We feel it is easier to understand the de Caml
implementations because the reader can reason in the presence of these informative dependent types.

In this paper, it is neither possible nor necessary to formally present DML. Instead, we focus on presenting
some concrete examples in the programming languagede Caml, a variant of DML, as well as some intuitive
explanation. We refer the interested reader to [22] for the formal development of DML, though we strongly
believe that this is largely unnecessary for comprehendingthis paper.

The rest of the paper is organized as follows. In Section 2, wegive a brief overview of the types in DML.
We then introduce de Caml in Section 3, presenting some of itsmain features and illustrating type-checking
in de Caml with a short example. Some case studies are given inSection 4, including implementations of
Braun trees, random-access lists, red-black trees and binomial heaps. Lastly, we discuss some related work
and then conclude.

2 Types in Dependent ML

In this section, we present a brief explanation on the types in DML. The reader is encouraged to skip this
section and read it later, though it could be helpful to gather some intuition before studying the concrete
examples in Section 3.

Intuitively speaking, dependent types are types which depend on the values of language expressions. For
instance, we may form a typeint(i) for each integeri to mean that every integer expression of this type must
have valuei, that is,int(i) is a singleton type. Note thati is the expression on which this type depends. We use
the nametype index expressionfor such an expression. There are various compelling reasons, such as practical
type-checking, for imposing restrictions on expressions which can be chosen as type index expressions. A

2

www.manaraa.com

index expressions i; j ::= a j j i+ j j i� j j i � j j i� j j min(i; j) j max(i; j) j mod(i; j)
index propositions P ::= i < j j i � j j i � j j i > j j i = j j i 6= j j P1 ^ P2 j P1 _ P2

index sorts ::= int j fa : j Pg j 1 � 2
index contexts � ::= � j �; a : j �; P

Figure 1: The syntax for type index expressions

novelty in DML is to require that type index expressions be drawn only from a given constraint domain. For
the purpose of this paper, we restrict type index expressions to integers. We present the syntax for type index
expressions in Figure 1, where we usea for type index variables and for a fixed integer. Note that the
language for type index expressions is typed. We usesorts for the types in this language in order to avoid
potential confusion. We use� for the empty index variable context and omit the standard sorting rules for this
language. We also use certain transparent abbreviations, such as0 � i < j which stands for0 � i ^ i < j.
The subset sortfa : j Pg stands for the sort for those elements of sort which satisfy the propositionP .
For example, we usenatas an abbreviation for the subset sortfa : int j a � 0g.

Types in DML are formed as follows. We use� for type variables andÆ for type constructors.

types � ::= � j (�1; : : : ; �n)Æ(i) j 1 j �1 � �2 j �1 ! �2 j �a : :� j �a : :�
For instance,list is a type constructor and(int)list(n) stands for the type of an integer list of lengthn.�a : :� and�a : :� form a universal dependent type and an existential dependent type, respectively.
For instance, the universal dependent type�a : nat:(int)list(a) ! (int)list(a) captures the invariant of a
function which, for every natural numbera, returns an integer list of lengtha when given an integer list of
lengtha. Also we can use the existential dependent type�a : nat:(int)list(a) to mean an integer list of
some unknown length. We demonstrate how a type constructor is declared in Section 3.

The typing rules for this language should be familiar from a dependently typed�-calculus (such as the
ones underlying Coq or NuPrl). The critical notion oftype conversionuses the judgment� ` �1 � �2 which
is the congruent extension of equality on index expressionsto arbitrary types:� j= �1 � � 01 � � � �n � � 0n � j= i := i0� ` (�1; : : : ; �n)Æ(i) � (� 01; : : : ; � 0n)Æ(i0)� ` �1 � � 01 � ` �2 � � 02� ` �1 � �2 � � 01 � � 02 � ` � 01 � �1 � ` �2 � � 02� ` �1 ! �2 � � 01 ! � 02�; a : ` � � � 0� ` �a : :� � �a : :� 0 �; a : ` � � � 0� ` �a : :� � �a : :� 0
Notice that it is the application of these rules which generates constraints. For instance, the constraint� j=(a+ n) + 1 := m+ n is generated in order to derive� ` (int)list((a+ n) + 1) � (int)list(m+ n).

It is difficult to present more details given the space limitation. For those who are interested, we point out
that the detailed formal development of DML can be found in [22].

3 Some Features in de Caml

In this section, we use examples to present some unique and significant features in de Caml, preparing for the
case studies in Section 4.

The programmer often declares datatypes when programming in ML. For instance, the following datatype
declaration defines a type constructorlist.

3

www.manaraa.com

type ’a list = nil | cons of ’a * ’a list

Roughly speaking, this declaration states that a polymorphic list is formed with two constructorsnil and
cons , whose types are’a list and’a * ’a list -> ’a list , respectively. We use’a for a type
variable. However, the declared type’a list is coarse. For instance, we cannot use the type to distinguish
an empty list from a non-empty one. In de Caml, this type can berefined as follows.

refine ’a list with nat =
nil(0) | {n:nat} cons(n+1) ’a * ’a list(n)

The clauserefine ’a list with nat means that we refine the type’a list with an index of sort
nat , that is, the index is a natural number. In this case, the index stands for the length of a list.� nil(0) means thatnil is of type’a list(0) , that is, it is a list of length0.� {n:nat} cons(n+1) of ’a * ’a list(n) means thatcons is of type

{n:nat} ’a * ’a list(n) -> ’a list(n+1) ;
that is, for every natural numbern, cons yields a list of lengthn + 1 when given an element of type
’a and a list of lengthn. Note{n:nat} is a universal quantifier, which is usually written as�n : nat
in type theory.

Now list types have become more informative. The following code defines the append function on lists. We
use[] for nil and:: as the infix operator forcons .

let rec append = function
([], ys) -> ys

| (x :: xs, ys) -> x :: append(xs, ys)
withtype {m:nat}{n:nat} ’a list(m)*’a list(n)->’a list(m +n)

Thewithtype clause is a type annotation supplied by the programmer, which simply states that the function
returns a list of length ofm+ n when given a pair of lists of lengthsm andn, respectively. We now present
an informal description about type-checking in this case.

For the first clause([], ys) -> ys , the type-checker assumes thatys is of types’a list(b) for
some index variableb of sortnat . This implies that([], ys) is of type’a list(0) * ’a list(b) .
The type-checker then instantiatesm andn with 0 andb, respectively, and verify that theys on the right side
of -> is of type’a list(0+b) . Sinceys is of type’a list(b) under assumption, the type-checker
generates a constraintb = 0+ b under the assumption thatb is a natural number. This constraint can be easily
verified.

Let us now type-check the second clause(x :: xs, ys) -> x :: append(xs, ys) . As-
sume thatxs andys are of type’a list(a) and ’a list(b) , respectively, wherea andb are index
variables of sortnat . Then(x :: xs, ys) is of type ’a list(a+1) * ’a list(b) , and we
therefore instantiatem andn with a + 1 andb, respectively. Also we infer that the right sidex :: ap-
pend(xs, ys) is of type ’a list((a+b)+1) sincexs andys are assumed of types’a list(a)
and ’a list(b) , respectively. We need to prove that the right side is of typeint list(m+n) form = a+ 1 andn = b. This leads to the following constraint,(a+ 1) + b = (a+ b) + 1
which can be immediately verified under that assumption thata andb are natural numbers. This finishes type-
checking the above de Caml program. The interested reader isreferred to [22] for the formal presentation of
type-checking in DML.

4

www.manaraa.com

Clearly, a natural question is whether the type forappend can be reconstructed or synthesized. For such
a simple example, this seems highly possible. However, our experience indicates that it seems exceedingly
difficult in general to synthesize dependent types in practice, though we have not formally studied this issue.

Instead of refining a type, it is also allowed to declare a dependent type in de Caml. For instance, we can
declare the following.

datatype ’a list with nat = nil(0) | {n:nat} cons of ’a * ’a list (n)

The declaration is basically equivalent to the refinement wemade earlier. However, there is also a significant
difference. When we declare a refinement, we must be able to interpret the corresponding unrefined types in
terms of refined ones. For example, after refining the type’a list , we must interpret this type in terms
of the refined list type. We need existential dependent typesfor this purpose.’a list is interpreted as
[n:nat] ’a list(n) , that is,’a list is ’a list(n) for some (unknown) natural numbern. Note
that [n:nat] is an existential quantifier, which is often written as�n : nat in type theory. This provides
a smooth interaction between ML types and dependent types. Suppose thatf is defined before the list type
is refined and its type is’a list -> ’a list . After refining the list type, we can assign tof the type
([n:nat] ’a list) -> [n:nat] ’a list , that is,f takes a list with unknown length and returns
a list with unknown length. This makes it possible forf to be applied to an argument of dependent type, say,
int list(2) . This is also essential for ensuring backward compatibility, a very important issue when the
use of existing ML code is concerned.

However, there is a need for imposing some restriction on datatype refinement. We give a short example
to illustrate such a need. The datatype’a tree is declared as follows forall binary trees.

datatype ’a tree = Leaf | Node of ’a tree * ’a * ’a tree

Suppose we declare the following refinement, where the type index standards for the height of a tree.

refine ’a tree with nat =
Leaf(0) | {h:nat} Node(h+1) of ’a tree(h) * ’a * ’a tree(h)

This refinement is problematic since the type[h:nat] ’a tree(h) now standards for the type of all
perfectbinary trees, and therefore it cannot be used to represent the original’a tree , which is the type for
all binary trees. There is some syntactic restriction that can be imposed to rule out such problematic datatype
refinements. We stop mentioning the restriction since it is simply not needed in this paper.

There is another important use of existential dependent types. In order to guarantee practical type check-
ing in de Caml, we must make constraints relatively simple. Currently, we only accept linear integer con-
straints. This immediately implies that there are many (realistic) constraints that are inexpressible in the type
system of de Caml. For instance, the following code implements a filter function on a list which removes
from the list all elements not satisfying the propertyp.

let filter p = function
[] -> []

| x :: xs -> if p(x) then x :: (filter p xs) else (filter p xs)

In general, it is impossible to know the length of the list(filter p l) without knowing whatp is.
Therefore, it is impossible to type the function using only universal dependent types. Nonetheless, we know
that the length of(filter p xs) is less than or equal to that ofl . This invariant can be captured by
assigningfilter the following types.

(’a -> bool) -> {m:nat} ’a list(m) -> [n:nat | n <= m] ’a list(n)

Note that[n:nat | n <= m] stands for�n : fa : nat j a � mg.
Another significant use of existential dependent types is torepresent a range of values. We can use

([n:nat] int(n)) array to represent the type for the vectors whose elements are natural numbers.

5

www.manaraa.com

datatype ’a brauntree with nat =
L(0)

| {m:nat}{n:nat | n <= m <= n+1}
B(m+n+1) of ’a * ’a brauntree(m) * ’a brauntree(n) ;;

let rec diff k = function
L -> 0

| B(_, l, r) ->
if k = 0 then 1
else if k mod 2 = 1 then diff (k/2) l else diff (k/2 - 1) r

withtype {k:nat}{n:nat | k <= n <= k+1}
int(k) -> ’a brauntree(n) -> int(n-k) ;;

let rec size = function
L -> 0 | B(_, l, r) -> let n = size r in 1 + n + n + diff n l

withtype {n:nat} ’a brauntree(n) -> int(n) ;;

Figure 2: An implementation of the size function on Braun trees

This is very useful for eliminating array bound checks at run-time [20]. In general, we view that the use
of existential types in de Caml for handling functions likefilter is crucial to the scalability of the type
system of de Caml since such functions are abundant in practice.

Lastly, we mention a convention in de Caml. After declaring adependent type as follows,

datatype (�1; : : : ; �m) Æ with (sort1; : : : ; sortn) = � � � � � �
we may write(�1; : : : ; �m)Æ to stand for the following.[a1 : sort1℄ � � � [an : sortn℄:(�1; : : : ; �m)Æ(a1; : : : ; an)
For example,’a list stands for[n:nat] ’a list(n) .

4 Case Studies

In this section, we present some examples to demonstrate theuse of dependent datatypes in capturing in-
variants in data structures. All these examples in de Caml have been successfully verified in a prototype
compiler for de Caml, which is written on top of the Caml-light compiler [14]. The claim we make is that
dependent datatypes enable the programmer to implement algorithms in a way that is more robust and easier
to understand.

4.1 Braun Trees

A Braun tree is a balanced binary tree [4] such that for every branch node in the tree, its left subtree is
either the same size as its right subtree, or contains one more element. Braun trees can be used to give neat
implementations for flexible arrays and priority queues. In[16], there is an algorithm which computes the
size of a Braun tree inO(log2 n) time, wheren is the size of the Braun tree. We implement this algorithm
in Figure 2. We first declare a dependent datatype’a brauntree(n) for Braun trees of sizen. Note that
the type ofB is

6

www.manaraa.com

{m:nat}{n:nat | n <= m <= n+1}
’a * ’a brauntree(m) * ’a brauntree(n) -> ’a brauntree(m+n+1)

which states thatB yields a Braun tree of sizem + n + 1 when given an element, a Braun tree of sizem
and a Braun tree of sizen wheren � m � n + 1 holds. This exactly captures the invariant on Braun trees
mentioned above.

Given a natural numberk and a Braun tree of sizen satisfyingk � n � k + 1, the functiondiff yields
the difference betweenn andk. With this function, the size function on Braun trees can be defined straight-
forwardly. An interesting point in this example is that the type of the functionsize precisely indicates that
this is the size function on Braun trees since it states that the function returns an integer of valuen when
given a Braun tree of sizen.

The reason thatdiff n l yields the difference betweenjlj, the size ofl, andn can be found in [16].
We give some brief explanation below. It is clear thatjlj � n is either0 or 1. If l is a leaf,jlj � n must be0.
Otherwise,jlj = 1 + jl0j + jr0j, wherel0 andr0 are the left and right branches ofl, respectively. Ifn is odd,
thenn = 1 + bn=2+ bn=2 and thusjlj � n = 1 + jl0j+ jr0j � 1 + bn=2+ bn=2 = (jl0j � bn=2) + (jr0j � bn=2)
Sincejl0j � 1 � jr0j � jl0j holds, we have the following.2(jl0j � bn=2)� 1 � jlj � n � 2(jl0j � bn=2)
It can now be readily verified thatjlj � n = 1 if jl0j � bn=2 = 1 and jlj � n = 0 if jl0j � bn=2 = 0.
Therefore, ifn is odd,jlj � n = jl0j � bn=2. With some similar reasoning, we can eventually prove the
correctness of the defined functiondiff .

This example also shows that although the datatype type declaration for Braun trees contains size in-
formation, this information is not available at run-time and therefore a recursive walk through the tree is
necessary to determine the size of a tree.

4.2 Random-Access Lists

A random-access list is a list representation such that listlookup (update) can be implemented in an efficient
way. In this case, the lookup (update) function takesO(logn) time in contrast to the usualO(n) time (worst
case), wheren is the length of the input list.

We present an implementation of random-access list in Figures 3 and 4. We first declare the depen-
dent datatype for random-access lists. Note that’a rlist(n) stands for the type of random-access lists
with lengthn. Nil andOne are the constructors for empty and singleton random-accesslists, respectively.
Furthermore, the constructorsEven andOdd are to form random-access lists of even and odd lengths, re-
spectively. Ifl1 andl2 represent listsx1; : : : ; xn andy1; : : : ; yn for somen > 0, respectively, thenEven
(l1, l2) represents the listx1; y1; : : : ; xn; yn. Similarly, if l1 and l2 represent listsx1; : : : ; xn; xn+1
andy1; : : : ; yn for somen > 0, respectively,Odd(l1, l2) representsx1; y1; : : : ; xn; yn; xn+1. With such
a data structure, we can implement a lookup (update) function on random-access list which takesO(logn)
time. A crucial invariant on this data structure is thatl1 and l2 must have the same length ifEven(l1,
l2) is formed orl1 contains one more element thanl2 if Odd(l1, l2) is formed. This is clearly cap-
tured by the dependent datatype declaration for’a rlist . The functioncons appends an element to a
list anduncons decomposes a list into a pair consisting of the head and the tail of the list. Note that the
type ofuncons requires this function only to be applied to a non-empty list. Bothcons anduncons takesO(logn) time.

The functionlookup_safe deserves some explanation. The type of this function indicates that it can
be applied toi andl only if i is a natural number and its value is less than the length ofl . Notice that the
look_up i l simply returnx when thel matches the patternOne x. There is no need to check whether

7

www.manaraa.com

datatype ’a rlist with nat =
Nil(0)

| One(1) of ’a
| {n:nat | n > 0} Even(n+n) of ’a rlist(n) * ’a rlist(n)
| {n:nat | n > 0} Odd(n+n+1) of ’a rlist(n+1) * ’a rlist(n) ;;

exception Subscript ;;

let rec cons x = function
Nil -> One x

| One y -> Even(One(x), One(y))
| Even(l1, l2) -> Odd(cons x l2, l1)
| Odd(l1, l2) -> Even(cons x l2, l1)

withtype {n:nat} ’a -> ’a rlist(n) -> ’a rlist(n+1) ;;

let rec uncons = function
One x -> (x, Nil)

| Even(l1, l2) ->
let (x, l1) = uncons l1 in begin

match l1 with
Nil -> (x, l2) | _ -> (x, Odd(l2, l1))

end
| Odd(l1, l2) -> let (x, l1) = uncons l1 in (x, Even(l2, l1))

withtype {n:nat | n > 0} ’a rlist(n) -> ’a * ’a rlist(n-1) ;;

let rec length = function
Nil -> 0

| One _ -> 1
| Even (l1, _) -> 2 * (length l1)
| Odd (_, l2) -> 2 * (length l2) + 1

withtype {n:nat} ’a rlist(n) -> int(n) ;;

let rec lookup_safe i = function
One x -> x

| Even(l1, l2) ->
if i mod 2 = 0 then lookup_safe (i / 2) l1
else lookup_safe (i / 2) l2

| Odd(l1, l2) ->
if i mod 2 = 0 then lookup_safe (i / 2) l1
else lookup_safe (i / 2) l2

withtype {i:nat}{n:nat | i < n} int(i) -> ’a rlist(n) -> ’a ;;

Figure 3: An implementation of random-access lists in de Caml (I)

8

www.manaraa.com

let rec update_safe i x = function
One y -> One x

| Even(l1, l2) ->
if i mod 2 = 0 then Even(update_safe (i / 2) x l1, l2)
else Even(l1, update_safe (i / 2) x l2)

| Odd(l1, l2) ->
if i mod 2 = 0 then Odd(update_safe (i / 2) x l1, l2)
else Odd(l1, update_safe (i / 2) x l2)

withtype {i:nat}{n:nat | i < n}
int(i) -> ’a -> ’a rlist(n) -> ’a rlist(n) ;;

Figure 4: An implementation of random-access lists in de Caml (II)

datatype ’a rlist with nat =
Nil(0)

| One(1) of ’a
| {n:nat | n > 0} Even(n+n) of (’a * ’a) rlist(n)
| {n:nat | n > 0} Odd(n+n+1) of ’a * (’a * ’a) rlist(n)

Figure 5: A nested dependent datatype for random access lists

i is 0: it must be sincei is a natural number andi is less than the length ofl , which is1 in this case. The
usual lookup function can be implemented as usual or as follows.

let rec lookup i l =
if i < 0 then raise Subscript
else if i >= length l then raise Subscript

else lookup_safe i l
withtype int -> ’a rlist -> ’a ;;

We point out that an implementation of random-access lists is given in [17], which uses the feature of
nested datatypes. Okasaki’s implementation supports (on average)O(1)-time consing and unconsing opera-
tions and are thus superior to our implementation in this respect. On the other hand, the update function in
Okasaki’s implementation requires the use of some higher-order feature, which does not exist in our imple-
mentation. We view this as an edge of our implementation.

It should be stressed that nested datatypes and DML-style dependent types are orthogonal to each other.
For instance, we can form a nested dependent datatype in Figure 5 for random-access lists, imitating a cor-
responding datatype in [17]. Unfortunately, we currently cannot experiment with such a dependent datatype
because polymorphic recursion is not supported in Caml-light.

4.3 Red-Black Trees

A red-black tree (RBT) is a balanced binary tree which satisfies the following conditions: (a) all leaves are
marked black and all other nodes are marked either red or black; (b) for every node there are the same number
of black nodes on every path connecting the node to a leaf, andthis number is called theblack heightof the
node; (c) the two sons of every red node must be black. It is a common practice to use the RBT data structure
for implementing a dictionary. We declare a datatype in Figure 6, which precisely captures these properties
of a RBT.

9

www.manaraa.com

type key == int ;;

sort color == {a:int | 0 <= a <= 1} ;;

datatype rbtree with (color, nat, nat) =
E(0, 0, 0)

| {cl:color}{cr:color}{bh:nat}
B(0, bh+1, 0) of rbtree(cl, bh, 0) * key * rbtree(cr, bh, 0)

| {cl:color}{cr:color}{bh:nat}
R(1, bh, cl+cr) of rbtree(cl, bh, 0) * key * rbtree(cr, bh, 0) ; ;

let restore = function
(R(R(a, x, b), y, c), z, d) -> R(B(a, x, b), y, B(c, z, d))

| (R(a, x, R(b, y, c)), z, d) -> R(B(a, x, b), y, B(c, z, d))
| (a, x, R(R(b, y, c), z, d)) -> R(B(a, x, b), y, B(c, z, d))
| (a, x, R(b, y, R(c, z, d))) -> R(B(a, x, b), y, B(c, z, d))
| (a, x, b) -> B(a, x, b)

withtype {cl:color}{cr:color}{bh:nat}{vl:nat}{vr:nat | vl+vr <= 1}
rbtree(cl, bh, vl) * key * rbtree(cr, bh, vr) ->
[c:color] rbtree(c, bh+1, 0) ;;

exception Item_already_exists ;;

let insert x t =
let rec ins = function

E -> R(E, x, E)
| B(a, y, b) -> if x < y then restore(ins a, y, b)

else if y < x then restore(a, y, ins b)
else raise Item_already_exists

| R(a, y, b) -> if x < y then R(ins a, y, b)
else if y < x then R(a, y, ins b)

else raise Item_already_exists
withtype {c:color}{bh:nat}

rbtree(c, bh, 0) ->
[c’:color][v:nat | v <= c] rbtree(c’, bh, v) in

match ins t with
R(a, y, b) -> B(a, y, b)

| t -> t
withtype {c:color}{bh:nat} key -> rbtree(c, bh, 0) ->

[bh’:nat] rbtree(0, bh’, 0) ;;

Figure 6: A red-black tree implementation

10

www.manaraa.com

A sort color is declared for the type index expressions representing thecolors of nodes. We use0 for
black and1 for red. For simplicity, we use integers for keys. Of course,one can readily use other ordered
data structures. The typerbtree is indexed with a triple(c, bh, v) , where is the color of the node,bh is the black height of the tree, andv is the number of color violations. We record one color violation if a
red node is followed by another red node, and thus a RBT must have no color violations. Clearly, the types
of constructors indicate that color violations cano only occur at the top node. Also, notice that a leaf, that is,
E, is considered black. Given the datatype declaration and the explanation, it should be clear that the type of
a RBT is simply

[c:color][bh:nat] rbtree(c,bh,0) ,

that is, a tree which has some top node color and some black heightbh but no color violations.
It is an involved task to implement RBT. The implementation we present is basically adopted from the

one in [17], though there are some minor modifications. We explain how the insertion operation on a RBT is
implemented. Clearly, the invariant we intend to capture isthat inserting an entry into a RBT yields another
RBT. In other words, we intend to declare that the insertion operation is of the following type.

key->[c:color][bh:nat] rbtree(c,bh,0)->[c:color][bh: nat] rbtree(c,bh,0)

If we insert an entry into a RBT, some properties on RBT may be violated. These properties can be restored
through some rotation operations. The functionrestore in Figure 6 is defined for this purpose.

The type ofrestore is easy to understand. It states that this function takes an entry, a tree with at most
one color violation and a RBT and returns a RBT tree. The two trees in the argument must have the same
black heightbh for some natural numberbh and the returned RBT has black heightbh+1. This information
can be of great help for understanding the code. If the information had been informally expressed through
comments, it would be difficult to know whether the comments can be trusted. Also notice that it is not
trivial at all to verify the information manually. We could imagine that almost everyone who did this would
appreciate the availability of a type-checker to perform itautomatically.

There is a great difference between type-checking a patternmatching clause in DML and in ML. The
operational semantics of ML requires that pattern matchingbe performed sequentially, that is, the chosen
pattern matching clause is always the first one which matchesa given value. For instance, in the definition
of the functionrestore , if the last clause is chosen at run-time, then we know the argument ofrestore
does not match either of the clauses ahead of the last one. This must be taken into account when we type-
checking pattern matching in DML. One approach is to expand patterns into disjoint ones. For instance, the
pattern(a, x, b) expands into36 patterns(pattern1; x; pattern2), wherepattern1 andpattern2 range
over the following six patterns:R(B _, _, B _) , R(B _, _, E) , R(E, _, B _) , R(E, _, E) ,
B _, andE. Unfortunately, such expansion may lead to combinatorial explosion. An alternative is to require
the programmer to indicate whether such expansion is needed. Neither of these is currently available in
de Caml, and the author has taken the inconvenience to expandpatterns into disjoint ones when necessary.
We emphasize that the code in Figure 6 must be thus expanded inorder to pass type-checking in de Caml.
Though this can be fixed straightforwardly, it is currently unclear what method can solve the problem best.

The complete implementation of the insertion operation follows immediately. Notice that the type of
function ins indicates thatins may return a tree with one color violation if it is applied to atree with red
top node. This is fixed by replacing the top node with a black one for every returned tree with a red top node.

Moreover, we can use an extra index to indicate the size of a RBT. If we do so, we can then show that the
insert function always returns a RBT of sizen+ 1 when given a RBT of sizen (note that an exception is
raised if the inserted entry already exists in the tree). Please refer to [23] for details.

4.4 Binomial Heaps

A binomial tree is defined recursively; a binomial treeB0 with rank0 consists of a single node and a binomial
treeBk+1 of rankk+1 consists of two linked binomial treesBk of rankk such that the root of oneBk is the

11

www.manaraa.com

leftmost son of the otherBk. A binomial heapH is a collection of binomial trees that satisfy the properties:
(a) each binomial tree inH is heap-ordered, that is, the key of a node is greater that or equal to the key of its
parent, and (b) there is at most one binomial tree inH whose root has a given degree. Please refer to [6] for
details.

We declare some datatypes in Figure 7 for forming binomial heaps. The typetree(n) is for binomial
trees of rankn, and the typetreelist(n) is for a list of binomial trees withdecreasingranks andn =m+1 if the list is not empty, wherem is the rank of the first binomial tree in the list. We representa binomial
heap as a list of binomial trees withincreasingranks. For a heap of typeheap(n) , if n = 0 then the heap
is empty; otherwisen = m + 1 wherem is the rank of the first binomial tree in the heap. Notice that we
attach rank to each tree node in order to efficiently compute the rank of a tree while using the type ofNode
to guarantee that the first component of each node indeed represents the rank of that node.

Notice that the datatype for binomial treesdoes notcapture the invariant stating that these trees are heap-
ordered. This seems to be beyond the reach of dependent datatypes. Also note that we would not be able
to capture some of the invariants if we used the ordinary listconstructors, that is,nil andcons , to form
tree lists. This leads to the introduction ofTempty , Tcons , Hempty andHcons . This special feature in
programming with dependent datatypes has an unpleasant consequence, which we mention in Section 5.

The implementation in Figure 7 and 8 is largely adopted from [17]. Since the type for the function
merge is relatively complex, we explain it as follows. This type states that given two binomial heaps of
typesheap(m) andheap(n) , respectively, this function returns a binomial heap of type heap(l) for
somel such thatl = m if n = 0, or l = n if m = 0, or l � min(m;n) > 0 otherwise.

5 Limitation

We mention some limitations of dependent datatypes in this section.
In order to capture invariants, we may have to declare new datatypes instead of using existing ones. For

instance, we declared the datatypetreelist in Figure 7 instead of using the existing list constructors to
form a list of trees. The reason is that we wanted to only form lists of binomial trees with decreasing rank.
Similarly, we introduced the datatypeheap to capture the invariant that a binomial heap is a list of trees with
increasing order. This forces us to define the functionto_heap later, which essentially reverses a list of
trees and append it to a heap. If we used the existing list constructors without declaring either oftreelist
andheap , we could then use some existing function on lists instead ofdefiningto_heap . In order words,
using dependent datatypes may lose some opportunities for code reuse.

Another limitation can be illustrated using the following example. LetB be the constructor declared
in Figure 2, which is used to form Braun trees. Suppose thatB(x, l, r) occurs in the code wherethe
programmer knowsfor some reason thatl is the same size asr or contains one more element but this cannot
be established in the type system of de Caml. In this case, thecode is to be rejected by the de Caml type-
checker, though the code will cause no run-time error (if we trust the programmer). The situation is very
similar to the case where we move from an untyped programminglanguage into a typed one. A solution to
this problem is that we introduce some run-time checks. For instance, we may define the following function
and replaceB(x, l, r) with make_brauntree x l r .

let make_brauntree x l r =
let m = size(l) and n = size(r) in

if n <= m && m <= n+1 then B(x, l, r) else raise Illegal_argument
withtype int -> brauntree -> brauntree -> brauntree

The functionmake_brauntree can readily pass type-checking in de Caml (we refer the interested reader
to [22] for further details). The penalty in this case is thatmake_brauntree takesO(log2 n) time to build
a tree of sizen, though this can be avoided if we store size information in each node.

In general, if the programmer anticipates the above situation to occur frequently, then she or he should
either make sure that run-time checks can be done efficientlyor switch back to non-dependent datatypes.

12

www.manaraa.com

datatype tree with nat =
{n:nat} Node(n) of int(n) * int * treelist(n)

and treelist with nat =
Tempty(0)

| {m:nat}{n:nat | m >= n} Tcons(m+1) of tree(m) * treelist(n) ;;

datatype heap with nat =
Hempty(0)

| {m:nat}{n:nat | n = 0 \/ m+1 < n} Hcons(m+1) of tree(m) * heap(n) ;;

let rank = function Node(r, _, _) -> r
withtype {n:nat} tree(n) -> int(n) ;;

let root = function Node(_, x, _) -> x
withtype {n:nat} tree(n) -> int ;;

let link (Node(r, x1, ts1) as t1) = function
Node(_, x2, ts2) as t2 ->
if (x1 <= x2) then Node(r+1, x1, Tcons(t2, ts1))
else Node(r+1, x2, Tcons(t1, ts2))

withtype {r:nat} tree(r) -> tree(r) -> tree(r+1) ;;

let rec insTree t = function
Hempty -> Hcons(t, Hempty)

| Hcons(t’, ts’) as ts ->
if rank t < rank t’ then Hcons(t, ts) else insTree (link t t’) ts ’

withtype {r:nat}{n:nat | n = 0 \/ r < n}
tree(r) -> heap(n) -> [l:nat | l > r] heap(l) ;;

let insert x hp = insTree (Node(0, x, Tempty)) hp
withtype int -> [n:nat] heap(n) -> [n:nat | n > 0] heap(n) ;;

let rec merge = function
(hp1, Hempty) -> hp1

| (Hempty, hp2) -> hp2
| (Hcons(t1, hp1’) as hp1), (Hcons(t2, hp2’) as hp2) ->

if rank t1 < rank t2 then Hcons(t1, merge(hp1’, hp2))
else if rank t1 > rank t2 then Hcons(t2, merge(hp1, hp2’))
else let hp = merge(hp1’, hp2’) in insTree (link t1 t2) hp

withtype {m:nat}{n:nat} heap(m) * heap(n) ->
[l:nat | (n = 0 /\ l = m) \/ (m = 0 /\ l = n) \/

(l >= min(m, n) > 0)] heap(l) ;;

Figure 7: An implementation of binomial heapin de Caml (I)

13

www.manaraa.com

exception Heap_is_empty ;;

let rec removeMinTree = function
Hempty -> raise Heap_is_empty

| Hcons(t, Hempty) -> (t, Hempty)
| Hcons(t, hp) ->

let (t’, hp’) = removeMinTree hp in
if root t < root t’ then (t, hp) else (t’, Hcons(t, hp’))

withtype {n:nat}
heap(n) ->
[r:nat][l:nat | l = 0 \/ l >= n > 0] (tree(r) * heap(l)) ;;

let findMin hp = let (t, _) = removeMinTree hp in root t
withtype {n:nat} heap(n) -> int ;;

let rec to_heap hp = function
Tempty -> hp

| Tcons(t, ts) -> to_heap (Hcons(t, hp)) ts
withtype {m:nat}{n:nat | m = 0 \/ m > n}

heap(m) -> treelist(n) -> heap ;;

let deleteMin hp =
let (Node(_, x, ts), hp) = removeMinTree hp
in merge (to_heap Hempty ts, hp)

withtype heap -> heap ;;

Figure 8: An implementation of binomial heap in de Caml (II)

We recommend that the programmer avoid complex encodings when using dependent datatypes to capture
invariants in data structures.

6 Related Work

The use of type systems in program error detection is ubiquitous. Usually, the types in general purpose pro-
gramming languages such as ML and Java are relatively inexpressive for the sake of practical type-checking.
In these languages, the use of types in program verification is effective but too limited. Our work can be
viewed as providing a more expressive type system to allow the programmer to capture more program prop-
erties through types and thus catch more errors at compile-time. As a consequence, types can serve as infor-
mative program documentation, facilitating program comprehension. We assign priority to the practicality
of type-checking in our language design and emphasize the need for restricting the expressiveness of a type
system.

In [21], we have compared our work with some traditional dependent type systems such as the ones
underlining Coq [8] and NuPrl [5], which are far more refined than the type system of DML. There, we also
give comparison to the notion of indexed types [25] (an earlier version of which is described in [24]), the
notion of refinement types [9, 7], the notion of sized types [13], and the programming language Cayenne [1].

There have been many recent studies on the use of nested datatypes [2] in constructing (sophisticated)
datatypes to capture more invariants in data structures. For instance, a variety of examples can be found in

14

www.manaraa.com

[3, 18, 10, 12, 11]. We feel that the advantage of this approach is that it requires relatively minor language
extensions, which may include polymorphic recursion, higher-order kinds, rank-2 polymorphism, to existing
functional programming languages such as Haskell, while type-checking in DML is much more involved.
On the other hand, this approach seems less flexible, often requiring some involved treatment at both type
and program level. The important notion of datatype refinement in DML cannot be captured with nested
datatypes. For instance, it is impossible to form a nested datatype that can capture the notion of the length of
a list since this would imply that one could simply use types to distinguish non-empty lists from empty ones.
In general, we think that these two approaches are essentially orthogonal in spite of some similar motivations
behind their development and they can be readily combined with little effort.

7 Conclusion

The use of dependent datatypes in capturing invariants in data structures is novel. This practice can offer
many advantages when we implement algorithms in advanced programming languages equipped with such a
mechanism. The most significant advantage is probably in program error detection. We argued in Section 1
that the imprecision of datatypes in Standard ML or Haskell in capturing invariants can be a rich source
for run-time program errors. In addition, the dependent type annotations supplied by the programmer are
mechanically verified and can thus be fully trusted. They canserve as valuable program documentation,
facilitating program understanding. There are also various uses of dependent datatypes in compiler optimiza-
tion.

Type-checking in DML is largely independent of the size of a program since a type-checking unit is
roughly the body of a toplevel function. In general, what matters in type-checking is the difficulty level of
the properties that are to be checked. A more serious issue ishow to report error messages in case of type
errors. The type-checking in de Caml implements a top-down style algorithm, which usually pinpoints to the
location of a type error. Unfortunately, the author finds that it may often be surprisingly difficult to figure
out the cause of a type error. On the positive side, the type-checker of de Caml is often capable of detecting
a variety of subtle errors. For instance, the author once used Even(l1, l2) to form a random-list (in
Figure 3) and the type-checker raised an error because it could not prove thatl1 cannot beNil . If this had
gone unnoticed, it would have invalidated some invariant assumed by the programmer, potentially causing
(difficult) run-time errors. We are currently in the processof gathering more statistics regarding the use of
de Caml.

The usual focus of data structure design is mainly on enhancing time and/or space efficiency, and less
attention is paid to program error detection. The introduction of dependent datatypes provides an opportunity
to remedy the situation. In general, we are interested in promoting the use of light-weight formal methods in
practical programming, enhancing the robustness of programs. We have presented some concrete examples
of dependent datatypes in this paper in support of such a promotion. We hope these examples can raise the
awareness of dependent datatypes and their use in implementing algorithms.

8 Acknowledgment

I thank Chris Okasaki, Ralf Hinze and an anonymous referee for their constructive comments, which have
undoubtedly raised the quality of the paper.

References
[1] Lennart Augustsson. Cayenne – a language with dependenttypes. InProceedings of the 3rd ACM SIGPLAN

International Conference on Functional Programming, pages 239–250, 1998.

[2] Richard Bird and Lambert Meertens. Nested datatypes. InMathematics of program construction, pages 52–67.
Springer-Verlag LNCS 1422, 1998.

15

www.manaraa.com

[3] Richard Bird and Ross Paterson. de bruijn notation as a nested datatypes.Journal of Functional Programming, To
appear.

[4] W. Braun and M. Rem. A logarithmic implementation of fexible arrays. Technical Report Memorandum MS83/1,
Eidenhoven University of Technology, 1983.

[5] Robert L. Constable et al.Implementing Mathematics with the NuPrl Proof DevelopmentSystem. Prentice-Hall,
Englewood Cliffs, New Jersey, 1986.

[6] Thomas H. Corman, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. The MIT Press,
Cambridge, Massachusetts, 1989.

[7] Rowan Davies. Practical refinement-type checking. Thesis Proposal, November 1997.

[8] Gilles Dowek, Amy Felty, Hugo Herbelin, Gérard Huet, Chet Murthy, Catherine Parent, Christine Paulin-Mohring,
and Benjamin Werner. The Coq proof assistant user’s guide. Rapport Techniques 154, INRIA, Rocquencourt,
France, 1993. Version 5.8.

[9] Tim Freeman and Frank Pfenning. Refinement types for ML. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 268–277, Toronto, Ontario, 1991.

[10] Ralf Hinze. Numerical Representations as Higher-Order Nested Types. Technical Report IAI-TR-98-12, Institut
für Informatik III, Universität Bonn, April 1998.

[11] Ralf Hinze. Constructing Red-Black Trees. InProceedings of Workshop on Algorithmic Aspects of Advanced
Programming Languages, September 1999.

[12] Ralf Hinze. Manufacturing Datatypes. InProceedings of Workshop on Algorithmic Aspects of AdvancedProgram-
ming Languages, September 1999. Also available as Technical Report IAI-TR-99-5, Institut für Informatik III,
Universität Bonn.

[13] John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive systems using sized types. In
Conference Record of 23rd ACM SIGPLAN Symposium on Principles of Programming Languages, pages 410–423,
1996.

[14] INRIA. Caml-light. http://caml.inria.fr .

[15] Robin Milner, Mads Tofte, Robert W. Harper, and D. MacQueen. The Definition of Standard ML. MIT Press,
Cambridge, Massachusetts, 1997.

[16] Chris Okasaki. Three Algorithms on Braun Trees by ChrisOkasaki.Journal of Functional Programming, 7(6):661–
666, November 1997.

[17] Chris Okasaki.Purely Functional Data Structures. Cambridge University Press, 1998.

[18] Chris Okasaki. From Fast Exponentiation to Square Matrices: An Adventure in Types. InProceedings of the 4th
ACM SIGPLAN International Conference on Functional Programming, September 1999.

[19] Simon Peyton Jones et al. Haskell 98 – A non-strict, purely functional language. Available from
http://www.haskell.org/onlinereport/ , February 1999.

[20] H. Xi and F. Pfenning. Eliminating array bound checkingthrough dependent types. InProceedings of ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages 249–257, Montreal, June
1998.

[21] H. Xi and F. Pfenning. Dependent types in practical programming. InProceedings of ACM SIGPLAN Symposium
on Principles of Programming Languages, pages 214–227, San Antonio, January 1999.

[22] Hongwei Xi. Dependent Types in Practical Programming. PhD thesis, Carnegie Mellon University, 1998. pp.
viii+189. Available ashttp://www.cs.cmu.edu/˜hwxi/DML/thesis.ps .

[23] Hongwei Xi. Some programming examples in de Caml. Available at
http://www.cse.ogi.edu/˜hongwei/DML/deCaml/examples / , 1999.

[24] Christoph Zenger. Indexed types.Theoretical Computer Science, 187:147–165, 1997.

[25] Christoph Zenger.Indizierte Typen. PhD thesis, Fakultät für Informatik, Universität Karlsruhe, 1998. Forthcoming.

16

